題目:Stochastic Configuration Networks: Theory and Applications
報告人:王殿輝 教授
時間:2017年12月6號 15:30-16:30
地點:格致中樓500室
報告摘要:
Randomized methods for development of neural networks have great potential to cope with big data processing. This methodology offers a trade-off solution between effectiveness and efficiency. Over the past decades, it has been a common practice to randomly assign the weights and biases of a neural network without any constraint, which results in poor modelling performance due to the existence of junk nodes. This talk reports our findings on the constraint condition and visually demonstrates the significance of our proposed supervisory mechanism to the performance improvement, An original, innovative and effective randomized learning algorithm and resulting randomized learner model, termed as deep stochastic configuration networks (DeepSCNs), are briefly introduced in this talk.
報告人簡歷:
王殿輝教授1995年3月獲東北大學工業自動化專業博士學位,1995年-1997年在新加坡南洋理工大學電子工程學院做博士后研究工作,1998年-2001年在香港理工大學計算學系研究員,從事機器學習,數據挖掘和圖像處理方面的研究工作。2001年7月至今在澳大利亞La Trobe大學計算機科學與信息技術系從事教學與科研工作。主要研究方向:計算智能與數據挖掘技術在大數據信息處理和智能系統方面的應用研究,發表研究論文200余篇。目前是IEEE高級會員,博士生導師,任《International Journal of Machine Intelligence and Sensory Signal Processing》主編,《IEEE Transactions on Neural Networks and Learning Systems》、《IEEE Transactions on Cyebernetics》、《Information Sciences》、《Neurocomputing》等多個國際期刊的副主編。
歡迎廣大師生參加!
理學院
2017年12月4日