sg电子老虎机-银行破坏家

機(jī)電工程學(xué)院訪學(xué)教師學(xué)術(shù)報(bào)告(一)基于Kriging模型的電磁場(chǎng)逆問題研究

來(lái)源: 機(jī)電工程學(xué)院 作者:李明利 添加日期:2018-01-02 08:18:59 閱讀次數(shù):

       報(bào)告題目:基于Kriging模型的電磁場(chǎng)逆問題研究
  主講人:安斯光
  時(shí)間:2018年1月4日下午13:30
  地點(diǎn):仰儀南樓207-2
  主講人介紹: Siguang An(安斯光) is an associate professor in Electrical Engineer department of China Jiliang University located in Hangzhou. Much of her research is focused on the scalar and vector algorithms applied in Inverse problems. Siguang An has published refereed research papers on Transactions on Magnetics and other academic journals such as improved cross entropy method and normal boundary intersection method. Now she is a principle investigator of a project supported by National Nature Science Foundation of China. 講座內(nèi)容簡(jiǎn)介: The research of electromagnetic inverse problems analysis is of great significance and industrial importance in the study of modern computational electromagnetism and optimization designs of electromagnetic devices. Electromagnetic forward problem and optimization algorithms are the two basis of the electromagnetic inverse problem. It is an important field of electromagnetic analysis to research on the modeling method and the solution accuracy of the forward problem and taking the preference of the decision maker into account in the inverse problem. This report will introduce the mathematical modeling of Kriging surrogate model to predict the results of forward problem, and a light beam search method in the vector optimization algorithms to realize the segment searching based on the preference of the decision maker.
  歡迎廣大師生參加!

機(jī)電工程學(xué)院
2018年1月2日

 

分享至:
百家乐庄闲点| 网上百家乐官网骗人吗| 百家乐官网怎么下注能赢| 百家乐具体怎么收费的| 兰桂坊百家乐官网的玩法技巧和规则| 太阳城官方网站| 网上百家乐软件大全酷| 百家乐官网博百家乐官网的玩法技巧和规则 | 赌博百家乐官网经验网| 97玩棋牌游戏中心| 澳门百家乐规则| 如何看百家乐官网路| 38坊| 大发888攻略| 百家乐赌博怎么玩| 澳门百家乐官网才能| 封开县| 博九| 财神娱乐城怎么样| 米其林百家乐官网的玩法技巧和规则| 南通市| 真人百家乐| 乐透乐博彩论坛| 百家乐技巧公司| 百家乐赢钱公式冯耕| 百家乐官网园小区户型图| 库伦旗| 东港市| 网上百家乐赌场| 解析百家乐投注法| 大发888娱乐场手机版| 百家乐说明| 百家乐赌场详解| 百家乐获胜秘决百家乐获胜秘诀| 长乐市| 申城棋牌网| 永亨娱乐城| 建水县| 百家乐官网补牌规律| 乃东县| 网上真钱娱乐|