講座時(shí)間:2024-06-24 09:00
講座地點(diǎn):騰訊會(huì)議:425-197-305 密碼:22232
主講人:王皓
主講人簡(jiǎn)介:王皓,加拿大生物數(shù)學(xué)首席科學(xué)家(Tier 1 Canada Research Chair in Mathematical Biosciences),加拿大阿爾伯塔大學(xué)終身正教授,阿爾伯塔大學(xué)數(shù)學(xué)生態(tài)學(xué)和傳染病學(xué)交叉研究實(shí)驗(yàn)室主任。現(xiàn)任9個(gè)國(guó)際生物數(shù)學(xué)和動(dòng)力系統(tǒng)主流雜志的主編或編委,已在高水平SCI期刊發(fā)表論文180余篇。在化學(xué)計(jì)量學(xué),動(dòng)物認(rèn)知移動(dòng),環(huán)境污染毒素,微生物分解,物種入侵,傳染病傳播機(jī)制和預(yù)測(cè)等都做出了開(kāi)創(chuàng)性和突破性研究。目前主導(dǎo)加拿大Alliance Missions等多個(gè)國(guó)家重點(diǎn)基金。榮獲加拿大應(yīng)用與工業(yè)數(shù)學(xué)會(huì)科研突破獎(jiǎng)(CAIMS-SCMAI Research Prize),阿爾伯塔大學(xué)杰出導(dǎo)師獎(jiǎng),約瑟夫·米歇爾指導(dǎo)獎(jiǎng),以及加拿大國(guó)家基金科研加速資助獎(jiǎng)等。
報(bào)告內(nèi)容概要:In this talk, I will present epidemic reaction-diffusion models with cognition and show the impact of movement strategies on disease outbreak and mitigation under a spatially heterogeneous environment. The cognitive diffusion either takes a Fokker-Planck type diffusion obtained by Chapman's diffusion law (called random diffusion) or follows Fick's diffusion law (called symmetric diffusion). We derive a variational expression of the basic reproduction number R0 for both models and prove that the disease-free equilibrium is unique and globally asymptotically stable if R0<1. Furthermore, if R0>1, the model following Fick's diffusion law admits at least one endemic equilibrium and the model following Chapman's diffusion law has a unique endemic equilibrium.
理學(xué)院
2024年06月20日